exec.go (32224B)
1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package template 6 7 import ( 8 "errors" 9 "fmt" 10 "github.com/gohugoio/hugo/tpl/internal/go_templates/fmtsort" 11 "github.com/gohugoio/hugo/tpl/internal/go_templates/texttemplate/parse" 12 "io" 13 "reflect" 14 "runtime" 15 "strings" 16 ) 17 18 // maxExecDepth specifies the maximum stack depth of templates within 19 // templates. This limit is only practically reached by accidentally 20 // recursive template invocations. This limit allows us to return 21 // an error instead of triggering a stack overflow. 22 var maxExecDepth = initMaxExecDepth() 23 24 func initMaxExecDepth() int { 25 if runtime.GOARCH == "wasm" { 26 return 1000 27 } 28 return 100000 29 } 30 31 // state represents the state of an execution. It's not part of the 32 // template so that multiple executions of the same template 33 // can execute in parallel. 34 type stateOld struct { 35 tmpl *Template 36 wr io.Writer 37 node parse.Node // current node, for errors 38 vars []variable // push-down stack of variable values. 39 depth int // the height of the stack of executing templates. 40 } 41 42 // variable holds the dynamic value of a variable such as $, $x etc. 43 type variable struct { 44 name string 45 value reflect.Value 46 } 47 48 // push pushes a new variable on the stack. 49 func (s *state) push(name string, value reflect.Value) { 50 s.vars = append(s.vars, variable{name, value}) 51 } 52 53 // mark returns the length of the variable stack. 54 func (s *state) mark() int { 55 return len(s.vars) 56 } 57 58 // pop pops the variable stack up to the mark. 59 func (s *state) pop(mark int) { 60 s.vars = s.vars[0:mark] 61 } 62 63 // setVar overwrites the last declared variable with the given name. 64 // Used by variable assignments. 65 func (s *state) setVar(name string, value reflect.Value) { 66 for i := s.mark() - 1; i >= 0; i-- { 67 if s.vars[i].name == name { 68 s.vars[i].value = value 69 return 70 } 71 } 72 s.errorf("undefined variable: %s", name) 73 } 74 75 // setTopVar overwrites the top-nth variable on the stack. Used by range iterations. 76 func (s *state) setTopVar(n int, value reflect.Value) { 77 s.vars[len(s.vars)-n].value = value 78 } 79 80 // varValue returns the value of the named variable. 81 func (s *state) varValue(name string) reflect.Value { 82 for i := s.mark() - 1; i >= 0; i-- { 83 if s.vars[i].name == name { 84 return s.vars[i].value 85 } 86 } 87 s.errorf("undefined variable: %s", name) 88 return zero 89 } 90 91 var zero reflect.Value 92 93 type missingValType struct{} 94 95 var missingVal = reflect.ValueOf(missingValType{}) 96 97 // at marks the state to be on node n, for error reporting. 98 func (s *state) at(node parse.Node) { 99 s.node = node 100 } 101 102 // doublePercent returns the string with %'s replaced by %%, if necessary, 103 // so it can be used safely inside a Printf format string. 104 func doublePercent(str string) string { 105 return strings.ReplaceAll(str, "%", "%%") 106 } 107 108 // TODO: It would be nice if ExecError was more broken down, but 109 // the way ErrorContext embeds the template name makes the 110 // processing too clumsy. 111 112 // ExecError is the custom error type returned when Execute has an 113 // error evaluating its template. (If a write error occurs, the actual 114 // error is returned; it will not be of type ExecError.) 115 type ExecError struct { 116 Name string // Name of template. 117 Err error // Pre-formatted error. 118 } 119 120 func (e ExecError) Error() string { 121 return e.Err.Error() 122 } 123 124 func (e ExecError) Unwrap() error { 125 return e.Err 126 } 127 128 // errorf records an ExecError and terminates processing. 129 func (s *state) errorf(format string, args ...any) { 130 name := doublePercent(s.tmpl.Name()) 131 if s.node == nil { 132 format = fmt.Sprintf("template: %s: %s", name, format) 133 } else { 134 location, context := s.tmpl.ErrorContext(s.node) 135 format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format) 136 } 137 panic(ExecError{ 138 Name: s.tmpl.Name(), 139 Err: fmt.Errorf(format, args...), 140 }) 141 } 142 143 // writeError is the wrapper type used internally when Execute has an 144 // error writing to its output. We strip the wrapper in errRecover. 145 // Note that this is not an implementation of error, so it cannot escape 146 // from the package as an error value. 147 type writeError struct { 148 Err error // Original error. 149 } 150 151 func (s *state) writeError(err error) { 152 panic(writeError{ 153 Err: err, 154 }) 155 } 156 157 // errRecover is the handler that turns panics into returns from the top 158 // level of Parse. 159 func errRecover(errp *error) { 160 e := recover() 161 if e != nil { 162 switch err := e.(type) { 163 case runtime.Error: 164 panic(e) 165 case writeError: 166 *errp = err.Err // Strip the wrapper. 167 case ExecError: 168 *errp = err // Keep the wrapper. 169 default: 170 panic(e) 171 } 172 } 173 } 174 175 // ExecuteTemplate applies the template associated with t that has the given name 176 // to the specified data object and writes the output to wr. 177 // If an error occurs executing the template or writing its output, 178 // execution stops, but partial results may already have been written to 179 // the output writer. 180 // A template may be executed safely in parallel, although if parallel 181 // executions share a Writer the output may be interleaved. 182 func (t *Template) ExecuteTemplate(wr io.Writer, name string, data any) error { 183 tmpl := t.Lookup(name) 184 if tmpl == nil { 185 return fmt.Errorf("template: no template %q associated with template %q", name, t.name) 186 } 187 return tmpl.Execute(wr, data) 188 } 189 190 // Execute applies a parsed template to the specified data object, 191 // and writes the output to wr. 192 // If an error occurs executing the template or writing its output, 193 // execution stops, but partial results may already have been written to 194 // the output writer. 195 // A template may be executed safely in parallel, although if parallel 196 // executions share a Writer the output may be interleaved. 197 // 198 // If data is a reflect.Value, the template applies to the concrete 199 // value that the reflect.Value holds, as in fmt.Print. 200 func (t *Template) Execute(wr io.Writer, data any) error { 201 return t.execute(wr, data) 202 } 203 204 func (t *Template) execute(wr io.Writer, data any) (err error) { 205 defer errRecover(&err) 206 value, ok := data.(reflect.Value) 207 if !ok { 208 value = reflect.ValueOf(data) 209 } 210 state := &state{ 211 tmpl: t, 212 wr: wr, 213 vars: []variable{{"$", value}}, 214 } 215 if t.Tree == nil || t.Root == nil { 216 state.errorf("%q is an incomplete or empty template", t.Name()) 217 } 218 state.walk(value, t.Root) 219 return 220 } 221 222 // DefinedTemplates returns a string listing the defined templates, 223 // prefixed by the string "; defined templates are: ". If there are none, 224 // it returns the empty string. For generating an error message here 225 // and in html/template. 226 func (t *Template) DefinedTemplates() string { 227 if t.common == nil { 228 return "" 229 } 230 var b strings.Builder 231 t.muTmpl.RLock() 232 defer t.muTmpl.RUnlock() 233 for name, tmpl := range t.tmpl { 234 if tmpl.Tree == nil || tmpl.Root == nil { 235 continue 236 } 237 if b.Len() == 0 { 238 b.WriteString("; defined templates are: ") 239 } else { 240 b.WriteString(", ") 241 } 242 fmt.Fprintf(&b, "%q", name) 243 } 244 return b.String() 245 } 246 247 // Sentinel errors for use with panic to signal early exits from range loops. 248 var ( 249 walkBreak = errors.New("break") 250 walkContinue = errors.New("continue") 251 ) 252 253 // Walk functions step through the major pieces of the template structure, 254 // generating output as they go. 255 func (s *state) walk(dot reflect.Value, node parse.Node) { 256 s.at(node) 257 switch node := node.(type) { 258 case *parse.ActionNode: 259 // Do not pop variables so they persist until next end. 260 // Also, if the action declares variables, don't print the result. 261 val := s.evalPipeline(dot, node.Pipe) 262 if len(node.Pipe.Decl) == 0 { 263 s.printValue(node, val) 264 } 265 case *parse.BreakNode: 266 panic(walkBreak) 267 case *parse.CommentNode: 268 case *parse.ContinueNode: 269 panic(walkContinue) 270 case *parse.IfNode: 271 s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList) 272 case *parse.ListNode: 273 for _, node := range node.Nodes { 274 s.walk(dot, node) 275 } 276 case *parse.RangeNode: 277 s.walkRange(dot, node) 278 case *parse.TemplateNode: 279 s.walkTemplate(dot, node) 280 case *parse.TextNode: 281 if _, err := s.wr.Write(node.Text); err != nil { 282 s.writeError(err) 283 } 284 case *parse.WithNode: 285 s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList) 286 default: 287 s.errorf("unknown node: %s", node) 288 } 289 } 290 291 // walkIfOrWith walks an 'if' or 'with' node. The two control structures 292 // are identical in behavior except that 'with' sets dot. 293 func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) { 294 defer s.pop(s.mark()) 295 val := s.evalPipeline(dot, pipe) 296 truth, ok := isTrue(indirectInterface(val)) 297 if !ok { 298 s.errorf("if/with can't use %v", val) 299 } 300 if truth { 301 if typ == parse.NodeWith { 302 s.walk(val, list) 303 } else { 304 s.walk(dot, list) 305 } 306 } else if elseList != nil { 307 s.walk(dot, elseList) 308 } 309 } 310 311 // IsTrue reports whether the value is 'true', in the sense of not the zero of its type, 312 // and whether the value has a meaningful truth value. This is the definition of 313 // truth used by if and other such actions. 314 func IsTrue(val any) (truth, ok bool) { 315 return isTrue(reflect.ValueOf(val)) 316 } 317 318 func isTrueOld(val reflect.Value) (truth, ok bool) { 319 if !val.IsValid() { 320 // Something like var x interface{}, never set. It's a form of nil. 321 return false, true 322 } 323 switch val.Kind() { 324 case reflect.Array, reflect.Map, reflect.Slice, reflect.String: 325 truth = val.Len() > 0 326 case reflect.Bool: 327 truth = val.Bool() 328 case reflect.Complex64, reflect.Complex128: 329 truth = val.Complex() != 0 330 case reflect.Chan, reflect.Func, reflect.Pointer, reflect.Interface: 331 truth = !val.IsNil() 332 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 333 truth = val.Int() != 0 334 case reflect.Float32, reflect.Float64: 335 truth = val.Float() != 0 336 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 337 truth = val.Uint() != 0 338 case reflect.Struct: 339 truth = true // Struct values are always true. 340 default: 341 return 342 } 343 return truth, true 344 } 345 346 func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) { 347 s.at(r) 348 defer func() { 349 if r := recover(); r != nil && r != walkBreak { 350 panic(r) 351 } 352 }() 353 defer s.pop(s.mark()) 354 val, _ := indirect(s.evalPipeline(dot, r.Pipe)) 355 // mark top of stack before any variables in the body are pushed. 356 mark := s.mark() 357 oneIteration := func(index, elem reflect.Value) { 358 // Set top var (lexically the second if there are two) to the element. 359 if len(r.Pipe.Decl) > 0 { 360 s.setTopVar(1, elem) 361 } 362 // Set next var (lexically the first if there are two) to the index. 363 if len(r.Pipe.Decl) > 1 { 364 s.setTopVar(2, index) 365 } 366 defer s.pop(mark) 367 defer func() { 368 // Consume panic(walkContinue) 369 if r := recover(); r != nil && r != walkContinue { 370 panic(r) 371 } 372 }() 373 s.walk(elem, r.List) 374 } 375 switch val.Kind() { 376 case reflect.Array, reflect.Slice: 377 if val.Len() == 0 { 378 break 379 } 380 for i := 0; i < val.Len(); i++ { 381 oneIteration(reflect.ValueOf(i), val.Index(i)) 382 } 383 return 384 case reflect.Map: 385 if val.Len() == 0 { 386 break 387 } 388 om := fmtsort.Sort(val) 389 for i, key := range om.Key { 390 oneIteration(key, om.Value[i]) 391 } 392 return 393 case reflect.Chan: 394 if val.IsNil() { 395 break 396 } 397 if val.Type().ChanDir() == reflect.SendDir { 398 s.errorf("range over send-only channel %v", val) 399 break 400 } 401 i := 0 402 for ; ; i++ { 403 elem, ok := val.Recv() 404 if !ok { 405 break 406 } 407 oneIteration(reflect.ValueOf(i), elem) 408 } 409 if i == 0 { 410 break 411 } 412 return 413 case reflect.Invalid: 414 break // An invalid value is likely a nil map, etc. and acts like an empty map. 415 default: 416 s.errorf("range can't iterate over %v", val) 417 } 418 if r.ElseList != nil { 419 s.walk(dot, r.ElseList) 420 } 421 } 422 423 func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) { 424 s.at(t) 425 tmpl := s.tmpl.Lookup(t.Name) 426 if tmpl == nil { 427 s.errorf("template %q not defined", t.Name) 428 } 429 if s.depth == maxExecDepth { 430 s.errorf("exceeded maximum template depth (%v)", maxExecDepth) 431 } 432 // Variables declared by the pipeline persist. 433 dot = s.evalPipeline(dot, t.Pipe) 434 newState := *s 435 newState.depth++ 436 newState.tmpl = tmpl 437 // No dynamic scoping: template invocations inherit no variables. 438 newState.vars = []variable{{"$", dot}} 439 newState.walk(dot, tmpl.Root) 440 } 441 442 // Eval functions evaluate pipelines, commands, and their elements and extract 443 // values from the data structure by examining fields, calling methods, and so on. 444 // The printing of those values happens only through walk functions. 445 446 // evalPipeline returns the value acquired by evaluating a pipeline. If the 447 // pipeline has a variable declaration, the variable will be pushed on the 448 // stack. Callers should therefore pop the stack after they are finished 449 // executing commands depending on the pipeline value. 450 func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) { 451 if pipe == nil { 452 return 453 } 454 s.at(pipe) 455 value = missingVal 456 for _, cmd := range pipe.Cmds { 457 value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg. 458 // If the object has type interface{}, dig down one level to the thing inside. 459 if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { 460 value = reflect.ValueOf(value.Interface()) // lovely! 461 } 462 } 463 for _, variable := range pipe.Decl { 464 if pipe.IsAssign { 465 s.setVar(variable.Ident[0], value) 466 } else { 467 s.push(variable.Ident[0], value) 468 } 469 } 470 return value 471 } 472 473 func (s *state) notAFunction(args []parse.Node, final reflect.Value) { 474 if len(args) > 1 || final != missingVal { 475 s.errorf("can't give argument to non-function %s", args[0]) 476 } 477 } 478 479 func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value { 480 firstWord := cmd.Args[0] 481 switch n := firstWord.(type) { 482 case *parse.FieldNode: 483 return s.evalFieldNode(dot, n, cmd.Args, final) 484 case *parse.ChainNode: 485 return s.evalChainNode(dot, n, cmd.Args, final) 486 case *parse.IdentifierNode: 487 // Must be a function. 488 return s.evalFunction(dot, n, cmd, cmd.Args, final) 489 case *parse.PipeNode: 490 // Parenthesized pipeline. The arguments are all inside the pipeline; final must be absent. 491 s.notAFunction(cmd.Args, final) 492 return s.evalPipeline(dot, n) 493 case *parse.VariableNode: 494 return s.evalVariableNode(dot, n, cmd.Args, final) 495 } 496 s.at(firstWord) 497 s.notAFunction(cmd.Args, final) 498 switch word := firstWord.(type) { 499 case *parse.BoolNode: 500 return reflect.ValueOf(word.True) 501 case *parse.DotNode: 502 return dot 503 case *parse.NilNode: 504 s.errorf("nil is not a command") 505 case *parse.NumberNode: 506 return s.idealConstant(word) 507 case *parse.StringNode: 508 return reflect.ValueOf(word.Text) 509 } 510 s.errorf("can't evaluate command %q", firstWord) 511 panic("not reached") 512 } 513 514 // idealConstant is called to return the value of a number in a context where 515 // we don't know the type. In that case, the syntax of the number tells us 516 // its type, and we use Go rules to resolve. Note there is no such thing as 517 // a uint ideal constant in this situation - the value must be of int type. 518 func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value { 519 // These are ideal constants but we don't know the type 520 // and we have no context. (If it was a method argument, 521 // we'd know what we need.) The syntax guides us to some extent. 522 s.at(constant) 523 switch { 524 case constant.IsComplex: 525 return reflect.ValueOf(constant.Complex128) // incontrovertible. 526 527 case constant.IsFloat && 528 !isHexInt(constant.Text) && !isRuneInt(constant.Text) && 529 strings.ContainsAny(constant.Text, ".eEpP"): 530 return reflect.ValueOf(constant.Float64) 531 532 case constant.IsInt: 533 n := int(constant.Int64) 534 if int64(n) != constant.Int64 { 535 s.errorf("%s overflows int", constant.Text) 536 } 537 return reflect.ValueOf(n) 538 539 case constant.IsUint: 540 s.errorf("%s overflows int", constant.Text) 541 } 542 return zero 543 } 544 545 func isRuneInt(s string) bool { 546 return len(s) > 0 && s[0] == '\'' 547 } 548 549 func isHexInt(s string) bool { 550 return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') && !strings.ContainsAny(s, "pP") 551 } 552 553 func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value { 554 s.at(field) 555 return s.evalFieldChain(dot, dot, field, field.Ident, args, final) 556 } 557 558 func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value { 559 s.at(chain) 560 if len(chain.Field) == 0 { 561 s.errorf("internal error: no fields in evalChainNode") 562 } 563 if chain.Node.Type() == parse.NodeNil { 564 s.errorf("indirection through explicit nil in %s", chain) 565 } 566 // (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields. 567 pipe := s.evalArg(dot, nil, chain.Node) 568 return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final) 569 } 570 571 func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value { 572 // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields. 573 s.at(variable) 574 value := s.varValue(variable.Ident[0]) 575 if len(variable.Ident) == 1 { 576 s.notAFunction(args, final) 577 return value 578 } 579 return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final) 580 } 581 582 // evalFieldChain evaluates .X.Y.Z possibly followed by arguments. 583 // dot is the environment in which to evaluate arguments, while 584 // receiver is the value being walked along the chain. 585 func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value { 586 n := len(ident) 587 for i := 0; i < n-1; i++ { 588 receiver = s.evalField(dot, ident[i], node, nil, missingVal, receiver) 589 } 590 // Now if it's a method, it gets the arguments. 591 return s.evalField(dot, ident[n-1], node, args, final, receiver) 592 } 593 594 func (s *state) evalFunctionOld(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value { 595 s.at(node) 596 name := node.Ident 597 function, isBuiltin, ok := findFunction(name, s.tmpl) 598 if !ok { 599 s.errorf("%q is not a defined function", name) 600 } 601 return s.evalCall(dot, function, isBuiltin, cmd, name, args, final) 602 } 603 604 // evalField evaluates an expression like (.Field) or (.Field arg1 arg2). 605 // The 'final' argument represents the return value from the preceding 606 // value of the pipeline, if any. 607 func (s *state) evalFieldOld(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value { 608 if !receiver.IsValid() { 609 if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key. 610 s.errorf("nil data; no entry for key %q", fieldName) 611 } 612 return zero 613 } 614 typ := receiver.Type() 615 receiver, isNil := indirect(receiver) 616 if receiver.Kind() == reflect.Interface && isNil { 617 // Calling a method on a nil interface can't work. The 618 // MethodByName method call below would panic. 619 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 620 return zero 621 } 622 623 // Unless it's an interface, need to get to a value of type *T to guarantee 624 // we see all methods of T and *T. 625 ptr := receiver 626 if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Pointer && ptr.CanAddr() { 627 ptr = ptr.Addr() 628 } 629 if method := ptr.MethodByName(fieldName); method.IsValid() { 630 return s.evalCall(dot, method, false, node, fieldName, args, final) 631 } 632 hasArgs := len(args) > 1 || final != missingVal 633 // It's not a method; must be a field of a struct or an element of a map. 634 switch receiver.Kind() { 635 case reflect.Struct: 636 tField, ok := receiver.Type().FieldByName(fieldName) 637 if ok { 638 field, err := receiver.FieldByIndexErr(tField.Index) 639 if !tField.IsExported() { 640 s.errorf("%s is an unexported field of struct type %s", fieldName, typ) 641 } 642 if err != nil { 643 s.errorf("%v", err) 644 } 645 // If it's a function, we must call it. 646 if hasArgs { 647 s.errorf("%s has arguments but cannot be invoked as function", fieldName) 648 } 649 return field 650 } 651 case reflect.Map: 652 // If it's a map, attempt to use the field name as a key. 653 nameVal := reflect.ValueOf(fieldName) 654 if nameVal.Type().AssignableTo(receiver.Type().Key()) { 655 if hasArgs { 656 s.errorf("%s is not a method but has arguments", fieldName) 657 } 658 result := receiver.MapIndex(nameVal) 659 if !result.IsValid() { 660 switch s.tmpl.option.missingKey { 661 case mapInvalid: 662 // Just use the invalid value. 663 case mapZeroValue: 664 result = reflect.Zero(receiver.Type().Elem()) 665 case mapError: 666 s.errorf("map has no entry for key %q", fieldName) 667 } 668 } 669 return result 670 } 671 case reflect.Pointer: 672 etyp := receiver.Type().Elem() 673 if etyp.Kind() == reflect.Struct { 674 if _, ok := etyp.FieldByName(fieldName); !ok { 675 // If there's no such field, say "can't evaluate" 676 // instead of "nil pointer evaluating". 677 break 678 } 679 } 680 if isNil { 681 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 682 } 683 } 684 s.errorf("can't evaluate field %s in type %s", fieldName, typ) 685 panic("not reached") 686 } 687 688 var ( 689 errorType = reflect.TypeOf((*error)(nil)).Elem() 690 fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem() 691 reflectValueType = reflect.TypeOf((*reflect.Value)(nil)).Elem() 692 ) 693 694 // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so 695 // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0] 696 // as the function itself. 697 func (s *state) evalCallOld(dot, fun reflect.Value, isBuiltin bool, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value { 698 if args != nil { 699 args = args[1:] // Zeroth arg is function name/node; not passed to function. 700 } 701 typ := fun.Type() 702 numIn := len(args) 703 if final != missingVal { 704 numIn++ 705 } 706 numFixed := len(args) 707 if typ.IsVariadic() { 708 numFixed = typ.NumIn() - 1 // last arg is the variadic one. 709 if numIn < numFixed { 710 s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) 711 } 712 } else if numIn != typ.NumIn() { 713 s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), numIn) 714 } 715 if !goodFunc(typ) { 716 // TODO: This could still be a confusing error; maybe goodFunc should provide info. 717 s.errorf("can't call method/function %q with %d results", name, typ.NumOut()) 718 } 719 720 unwrap := func(v reflect.Value) reflect.Value { 721 if v.Type() == reflectValueType { 722 v = v.Interface().(reflect.Value) 723 } 724 return v 725 } 726 727 // Special case for builtin and/or, which short-circuit. 728 if isBuiltin && (name == "and" || name == "or") { 729 argType := typ.In(0) 730 var v reflect.Value 731 for _, arg := range args { 732 v = s.evalArg(dot, argType, arg).Interface().(reflect.Value) 733 if truth(v) == (name == "or") { 734 // This value was already unwrapped 735 // by the .Interface().(reflect.Value). 736 return v 737 } 738 } 739 if final != missingVal { 740 // The last argument to and/or is coming from 741 // the pipeline. We didn't short circuit on an earlier 742 // argument, so we are going to return this one. 743 // We don't have to evaluate final, but we do 744 // have to check its type. Then, since we are 745 // going to return it, we have to unwrap it. 746 v = unwrap(s.validateType(final, argType)) 747 } 748 return v 749 } 750 751 // Build the arg list. 752 argv := make([]reflect.Value, numIn) 753 // Args must be evaluated. Fixed args first. 754 i := 0 755 for ; i < numFixed && i < len(args); i++ { 756 argv[i] = s.evalArg(dot, typ.In(i), args[i]) 757 } 758 // Now the ... args. 759 if typ.IsVariadic() { 760 argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. 761 for ; i < len(args); i++ { 762 argv[i] = s.evalArg(dot, argType, args[i]) 763 } 764 } 765 // Add final value if necessary. 766 if final != missingVal { 767 t := typ.In(typ.NumIn() - 1) 768 if typ.IsVariadic() { 769 if numIn-1 < numFixed { 770 // The added final argument corresponds to a fixed parameter of the function. 771 // Validate against the type of the actual parameter. 772 t = typ.In(numIn - 1) 773 } else { 774 // The added final argument corresponds to the variadic part. 775 // Validate against the type of the elements of the variadic slice. 776 t = t.Elem() 777 } 778 } 779 argv[i] = s.validateType(final, t) 780 } 781 v, err := safeCall(fun, argv) 782 // If we have an error that is not nil, stop execution and return that 783 // error to the caller. 784 if err != nil { 785 s.at(node) 786 s.errorf("error calling %s: %w", name, err) 787 } 788 return unwrap(v) 789 } 790 791 // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero. 792 func canBeNil(typ reflect.Type) bool { 793 switch typ.Kind() { 794 case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Pointer, reflect.Slice: 795 return true 796 case reflect.Struct: 797 return typ == reflectValueType 798 } 799 return false 800 } 801 802 // validateType guarantees that the value is valid and assignable to the type. 803 func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value { 804 if !value.IsValid() { 805 if typ == nil { 806 // An untyped nil interface{}. Accept as a proper nil value. 807 return reflect.ValueOf(nil) 808 } 809 if canBeNil(typ) { 810 // Like above, but use the zero value of the non-nil type. 811 return reflect.Zero(typ) 812 } 813 s.errorf("invalid value; expected %s", typ) 814 } 815 if typ == reflectValueType && value.Type() != typ { 816 return reflect.ValueOf(value) 817 } 818 if typ != nil && !value.Type().AssignableTo(typ) { 819 if value.Kind() == reflect.Interface && !value.IsNil() { 820 value = value.Elem() 821 if value.Type().AssignableTo(typ) { 822 return value 823 } 824 // fallthrough 825 } 826 // Does one dereference or indirection work? We could do more, as we 827 // do with method receivers, but that gets messy and method receivers 828 // are much more constrained, so it makes more sense there than here. 829 // Besides, one is almost always all you need. 830 switch { 831 case value.Kind() == reflect.Pointer && value.Type().Elem().AssignableTo(typ): 832 value = value.Elem() 833 if !value.IsValid() { 834 s.errorf("dereference of nil pointer of type %s", typ) 835 } 836 case reflect.PointerTo(value.Type()).AssignableTo(typ) && value.CanAddr(): 837 value = value.Addr() 838 default: 839 s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) 840 } 841 } 842 return value 843 } 844 845 func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value { 846 s.at(n) 847 switch arg := n.(type) { 848 case *parse.DotNode: 849 return s.validateType(dot, typ) 850 case *parse.NilNode: 851 if canBeNil(typ) { 852 return reflect.Zero(typ) 853 } 854 s.errorf("cannot assign nil to %s", typ) 855 case *parse.FieldNode: 856 return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, missingVal), typ) 857 case *parse.VariableNode: 858 return s.validateType(s.evalVariableNode(dot, arg, nil, missingVal), typ) 859 case *parse.PipeNode: 860 return s.validateType(s.evalPipeline(dot, arg), typ) 861 case *parse.IdentifierNode: 862 return s.validateType(s.evalFunction(dot, arg, arg, nil, missingVal), typ) 863 case *parse.ChainNode: 864 return s.validateType(s.evalChainNode(dot, arg, nil, missingVal), typ) 865 } 866 switch typ.Kind() { 867 case reflect.Bool: 868 return s.evalBool(typ, n) 869 case reflect.Complex64, reflect.Complex128: 870 return s.evalComplex(typ, n) 871 case reflect.Float32, reflect.Float64: 872 return s.evalFloat(typ, n) 873 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 874 return s.evalInteger(typ, n) 875 case reflect.Interface: 876 if typ.NumMethod() == 0 { 877 return s.evalEmptyInterface(dot, n) 878 } 879 case reflect.Struct: 880 if typ == reflectValueType { 881 return reflect.ValueOf(s.evalEmptyInterface(dot, n)) 882 } 883 case reflect.String: 884 return s.evalString(typ, n) 885 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 886 return s.evalUnsignedInteger(typ, n) 887 } 888 s.errorf("can't handle %s for arg of type %s", n, typ) 889 panic("not reached") 890 } 891 892 func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value { 893 s.at(n) 894 if n, ok := n.(*parse.BoolNode); ok { 895 value := reflect.New(typ).Elem() 896 value.SetBool(n.True) 897 return value 898 } 899 s.errorf("expected bool; found %s", n) 900 panic("not reached") 901 } 902 903 func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value { 904 s.at(n) 905 if n, ok := n.(*parse.StringNode); ok { 906 value := reflect.New(typ).Elem() 907 value.SetString(n.Text) 908 return value 909 } 910 s.errorf("expected string; found %s", n) 911 panic("not reached") 912 } 913 914 func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value { 915 s.at(n) 916 if n, ok := n.(*parse.NumberNode); ok && n.IsInt { 917 value := reflect.New(typ).Elem() 918 value.SetInt(n.Int64) 919 return value 920 } 921 s.errorf("expected integer; found %s", n) 922 panic("not reached") 923 } 924 925 func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value { 926 s.at(n) 927 if n, ok := n.(*parse.NumberNode); ok && n.IsUint { 928 value := reflect.New(typ).Elem() 929 value.SetUint(n.Uint64) 930 return value 931 } 932 s.errorf("expected unsigned integer; found %s", n) 933 panic("not reached") 934 } 935 936 func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value { 937 s.at(n) 938 if n, ok := n.(*parse.NumberNode); ok && n.IsFloat { 939 value := reflect.New(typ).Elem() 940 value.SetFloat(n.Float64) 941 return value 942 } 943 s.errorf("expected float; found %s", n) 944 panic("not reached") 945 } 946 947 func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value { 948 if n, ok := n.(*parse.NumberNode); ok && n.IsComplex { 949 value := reflect.New(typ).Elem() 950 value.SetComplex(n.Complex128) 951 return value 952 } 953 s.errorf("expected complex; found %s", n) 954 panic("not reached") 955 } 956 957 func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value { 958 s.at(n) 959 switch n := n.(type) { 960 case *parse.BoolNode: 961 return reflect.ValueOf(n.True) 962 case *parse.DotNode: 963 return dot 964 case *parse.FieldNode: 965 return s.evalFieldNode(dot, n, nil, missingVal) 966 case *parse.IdentifierNode: 967 return s.evalFunction(dot, n, n, nil, missingVal) 968 case *parse.NilNode: 969 // NilNode is handled in evalArg, the only place that calls here. 970 s.errorf("evalEmptyInterface: nil (can't happen)") 971 case *parse.NumberNode: 972 return s.idealConstant(n) 973 case *parse.StringNode: 974 return reflect.ValueOf(n.Text) 975 case *parse.VariableNode: 976 return s.evalVariableNode(dot, n, nil, missingVal) 977 case *parse.PipeNode: 978 return s.evalPipeline(dot, n) 979 } 980 s.errorf("can't handle assignment of %s to empty interface argument", n) 981 panic("not reached") 982 } 983 984 // indirect returns the item at the end of indirection, and a bool to indicate 985 // if it's nil. If the returned bool is true, the returned value's kind will be 986 // either a pointer or interface. 987 func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { 988 for ; v.Kind() == reflect.Pointer || v.Kind() == reflect.Interface; v = v.Elem() { 989 if v.IsNil() { 990 return v, true 991 } 992 } 993 return v, false 994 } 995 996 // indirectInterface returns the concrete value in an interface value, 997 // or else the zero reflect.Value. 998 // That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x): 999 // the fact that x was an interface value is forgotten. 1000 func indirectInterface(v reflect.Value) reflect.Value { 1001 if v.Kind() != reflect.Interface { 1002 return v 1003 } 1004 if v.IsNil() { 1005 return reflect.Value{} 1006 } 1007 return v.Elem() 1008 } 1009 1010 // printValue writes the textual representation of the value to the output of 1011 // the template. 1012 func (s *state) printValue(n parse.Node, v reflect.Value) { 1013 s.at(n) 1014 iface, ok := printableValue(v) 1015 if !ok { 1016 s.errorf("can't print %s of type %s", n, v.Type()) 1017 } 1018 _, err := fmt.Fprint(s.wr, iface) 1019 if err != nil { 1020 s.writeError(err) 1021 } 1022 } 1023 1024 // printableValue returns the, possibly indirected, interface value inside v that 1025 // is best for a call to formatted printer. 1026 func printableValue(v reflect.Value) (any, bool) { 1027 if v.Kind() == reflect.Pointer { 1028 v, _ = indirect(v) // fmt.Fprint handles nil. 1029 } 1030 if !v.IsValid() { 1031 return "<no value>", true 1032 } 1033 1034 if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) { 1035 if v.CanAddr() && (reflect.PointerTo(v.Type()).Implements(errorType) || reflect.PointerTo(v.Type()).Implements(fmtStringerType)) { 1036 v = v.Addr() 1037 } else { 1038 switch v.Kind() { 1039 case reflect.Chan, reflect.Func: 1040 return nil, false 1041 } 1042 } 1043 } 1044 return v.Interface(), true 1045 }