funcs.go (20354B)
1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package template 6 7 import ( 8 "bytes" 9 "errors" 10 "fmt" 11 "io" 12 "net/url" 13 "reflect" 14 "strings" 15 "sync" 16 "unicode" 17 "unicode/utf8" 18 ) 19 20 // FuncMap is the type of the map defining the mapping from names to functions. 21 // Each function must have either a single return value, or two return values of 22 // which the second has type error. In that case, if the second (error) 23 // return value evaluates to non-nil during execution, execution terminates and 24 // Execute returns that error. 25 // 26 // Errors returned by Execute wrap the underlying error; call errors.As to 27 // uncover them. 28 // 29 // When template execution invokes a function with an argument list, that list 30 // must be assignable to the function's parameter types. Functions meant to 31 // apply to arguments of arbitrary type can use parameters of type interface{} or 32 // of type reflect.Value. Similarly, functions meant to return a result of arbitrary 33 // type can return interface{} or reflect.Value. 34 type FuncMap map[string]any 35 36 // builtins returns the FuncMap. 37 // It is not a global variable so the linker can dead code eliminate 38 // more when this isn't called. See golang.org/issue/36021. 39 // TODO: revert this back to a global map once golang.org/issue/2559 is fixed. 40 func builtins() FuncMap { 41 return FuncMap{ 42 "and": and, 43 "call": call, 44 "html": HTMLEscaper, 45 "index": index, 46 "slice": slice, 47 "js": JSEscaper, 48 "len": length, 49 "not": not, 50 "or": or, 51 "print": fmt.Sprint, 52 "printf": fmt.Sprintf, 53 "println": fmt.Sprintln, 54 "urlquery": URLQueryEscaper, 55 56 // Comparisons 57 "eq": eq, // == 58 "ge": ge, // >= 59 "gt": gt, // > 60 "le": le, // <= 61 "lt": lt, // < 62 "ne": ne, // != 63 } 64 } 65 66 var builtinFuncsOnce struct { 67 sync.Once 68 v map[string]reflect.Value 69 } 70 71 // builtinFuncsOnce lazily computes & caches the builtinFuncs map. 72 // TODO: revert this back to a global map once golang.org/issue/2559 is fixed. 73 func builtinFuncs() map[string]reflect.Value { 74 builtinFuncsOnce.Do(func() { 75 builtinFuncsOnce.v = createValueFuncs(builtins()) 76 }) 77 return builtinFuncsOnce.v 78 } 79 80 // createValueFuncs turns a FuncMap into a map[string]reflect.Value 81 func createValueFuncs(funcMap FuncMap) map[string]reflect.Value { 82 m := make(map[string]reflect.Value) 83 addValueFuncs(m, funcMap) 84 return m 85 } 86 87 // addValueFuncs adds to values the functions in funcs, converting them to reflect.Values. 88 func addValueFuncs(out map[string]reflect.Value, in FuncMap) { 89 for name, fn := range in { 90 if !goodName(name) { 91 panic(fmt.Errorf("function name %q is not a valid identifier", name)) 92 } 93 v := reflect.ValueOf(fn) 94 if v.Kind() != reflect.Func { 95 panic("value for " + name + " not a function") 96 } 97 if !goodFunc(v.Type()) { 98 panic(fmt.Errorf("can't install method/function %q with %d results", name, v.Type().NumOut())) 99 } 100 out[name] = v 101 } 102 } 103 104 // addFuncs adds to values the functions in funcs. It does no checking of the input - 105 // call addValueFuncs first. 106 func addFuncs(out, in FuncMap) { 107 for name, fn := range in { 108 out[name] = fn 109 } 110 } 111 112 // goodFunc reports whether the function or method has the right result signature. 113 func goodFunc(typ reflect.Type) bool { 114 // We allow functions with 1 result or 2 results where the second is an error. 115 switch { 116 case typ.NumOut() == 1: 117 return true 118 case typ.NumOut() == 2 && typ.Out(1) == errorType: 119 return true 120 } 121 return false 122 } 123 124 // goodName reports whether the function name is a valid identifier. 125 func goodName(name string) bool { 126 if name == "" { 127 return false 128 } 129 for i, r := range name { 130 switch { 131 case r == '_': 132 case i == 0 && !unicode.IsLetter(r): 133 return false 134 case !unicode.IsLetter(r) && !unicode.IsDigit(r): 135 return false 136 } 137 } 138 return true 139 } 140 141 // findFunction looks for a function in the template, and global map. 142 func findFunction(name string, tmpl *Template) (v reflect.Value, isBuiltin, ok bool) { 143 if tmpl != nil && tmpl.common != nil { 144 tmpl.muFuncs.RLock() 145 defer tmpl.muFuncs.RUnlock() 146 if fn := tmpl.execFuncs[name]; fn.IsValid() { 147 return fn, false, true 148 } 149 } 150 if fn := builtinFuncs()[name]; fn.IsValid() { 151 return fn, true, true 152 } 153 return reflect.Value{}, false, false 154 } 155 156 // prepareArg checks if value can be used as an argument of type argType, and 157 // converts an invalid value to appropriate zero if possible. 158 func prepareArg(value reflect.Value, argType reflect.Type) (reflect.Value, error) { 159 if !value.IsValid() { 160 if !canBeNil(argType) { 161 return reflect.Value{}, fmt.Errorf("value is nil; should be of type %s", argType) 162 } 163 value = reflect.Zero(argType) 164 } 165 if value.Type().AssignableTo(argType) { 166 return value, nil 167 } 168 if intLike(value.Kind()) && intLike(argType.Kind()) && value.Type().ConvertibleTo(argType) { 169 value = value.Convert(argType) 170 return value, nil 171 } 172 return reflect.Value{}, fmt.Errorf("value has type %s; should be %s", value.Type(), argType) 173 } 174 175 func intLike(typ reflect.Kind) bool { 176 switch typ { 177 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 178 return true 179 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 180 return true 181 } 182 return false 183 } 184 185 // indexArg checks if a reflect.Value can be used as an index, and converts it to int if possible. 186 func indexArg(index reflect.Value, cap int) (int, error) { 187 var x int64 188 switch index.Kind() { 189 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 190 x = index.Int() 191 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 192 x = int64(index.Uint()) 193 case reflect.Invalid: 194 return 0, fmt.Errorf("cannot index slice/array with nil") 195 default: 196 return 0, fmt.Errorf("cannot index slice/array with type %s", index.Type()) 197 } 198 if x < 0 || int(x) < 0 || int(x) > cap { 199 return 0, fmt.Errorf("index out of range: %d", x) 200 } 201 return int(x), nil 202 } 203 204 // Indexing. 205 206 // index returns the result of indexing its first argument by the following 207 // arguments. Thus "index x 1 2 3" is, in Go syntax, x[1][2][3]. Each 208 // indexed item must be a map, slice, or array. 209 func index(item reflect.Value, indexes ...reflect.Value) (reflect.Value, error) { 210 item = indirectInterface(item) 211 if !item.IsValid() { 212 return reflect.Value{}, fmt.Errorf("index of untyped nil") 213 } 214 for _, index := range indexes { 215 index = indirectInterface(index) 216 var isNil bool 217 if item, isNil = indirect(item); isNil { 218 return reflect.Value{}, fmt.Errorf("index of nil pointer") 219 } 220 switch item.Kind() { 221 case reflect.Array, reflect.Slice, reflect.String: 222 x, err := indexArg(index, item.Len()) 223 if err != nil { 224 return reflect.Value{}, err 225 } 226 item = item.Index(x) 227 case reflect.Map: 228 index, err := prepareArg(index, item.Type().Key()) 229 if err != nil { 230 return reflect.Value{}, err 231 } 232 if x := item.MapIndex(index); x.IsValid() { 233 item = x 234 } else { 235 item = reflect.Zero(item.Type().Elem()) 236 } 237 case reflect.Invalid: 238 // the loop holds invariant: item.IsValid() 239 panic("unreachable") 240 default: 241 return reflect.Value{}, fmt.Errorf("can't index item of type %s", item.Type()) 242 } 243 } 244 return item, nil 245 } 246 247 // Slicing. 248 249 // slice returns the result of slicing its first argument by the remaining 250 // arguments. Thus "slice x 1 2" is, in Go syntax, x[1:2], while "slice x" 251 // is x[:], "slice x 1" is x[1:], and "slice x 1 2 3" is x[1:2:3]. The first 252 // argument must be a string, slice, or array. 253 func slice(item reflect.Value, indexes ...reflect.Value) (reflect.Value, error) { 254 item = indirectInterface(item) 255 if !item.IsValid() { 256 return reflect.Value{}, fmt.Errorf("slice of untyped nil") 257 } 258 if len(indexes) > 3 { 259 return reflect.Value{}, fmt.Errorf("too many slice indexes: %d", len(indexes)) 260 } 261 var cap int 262 switch item.Kind() { 263 case reflect.String: 264 if len(indexes) == 3 { 265 return reflect.Value{}, fmt.Errorf("cannot 3-index slice a string") 266 } 267 cap = item.Len() 268 case reflect.Array, reflect.Slice: 269 cap = item.Cap() 270 default: 271 return reflect.Value{}, fmt.Errorf("can't slice item of type %s", item.Type()) 272 } 273 // set default values for cases item[:], item[i:]. 274 idx := [3]int{0, item.Len()} 275 for i, index := range indexes { 276 x, err := indexArg(index, cap) 277 if err != nil { 278 return reflect.Value{}, err 279 } 280 idx[i] = x 281 } 282 // given item[i:j], make sure i <= j. 283 if idx[0] > idx[1] { 284 return reflect.Value{}, fmt.Errorf("invalid slice index: %d > %d", idx[0], idx[1]) 285 } 286 if len(indexes) < 3 { 287 return item.Slice(idx[0], idx[1]), nil 288 } 289 // given item[i:j:k], make sure i <= j <= k. 290 if idx[1] > idx[2] { 291 return reflect.Value{}, fmt.Errorf("invalid slice index: %d > %d", idx[1], idx[2]) 292 } 293 return item.Slice3(idx[0], idx[1], idx[2]), nil 294 } 295 296 // Length 297 298 // length returns the length of the item, with an error if it has no defined length. 299 func length(item reflect.Value) (int, error) { 300 item, isNil := indirect(item) 301 if isNil { 302 return 0, fmt.Errorf("len of nil pointer") 303 } 304 switch item.Kind() { 305 case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice, reflect.String: 306 return item.Len(), nil 307 } 308 return 0, fmt.Errorf("len of type %s", item.Type()) 309 } 310 311 // Function invocation 312 313 // call returns the result of evaluating the first argument as a function. 314 // The function must return 1 result, or 2 results, the second of which is an error. 315 func call(fn reflect.Value, args ...reflect.Value) (reflect.Value, error) { 316 fn = indirectInterface(fn) 317 if !fn.IsValid() { 318 return reflect.Value{}, fmt.Errorf("call of nil") 319 } 320 typ := fn.Type() 321 if typ.Kind() != reflect.Func { 322 return reflect.Value{}, fmt.Errorf("non-function of type %s", typ) 323 } 324 if !goodFunc(typ) { 325 return reflect.Value{}, fmt.Errorf("function called with %d args; should be 1 or 2", typ.NumOut()) 326 } 327 numIn := typ.NumIn() 328 var dddType reflect.Type 329 if typ.IsVariadic() { 330 if len(args) < numIn-1 { 331 return reflect.Value{}, fmt.Errorf("wrong number of args: got %d want at least %d", len(args), numIn-1) 332 } 333 dddType = typ.In(numIn - 1).Elem() 334 } else { 335 if len(args) != numIn { 336 return reflect.Value{}, fmt.Errorf("wrong number of args: got %d want %d", len(args), numIn) 337 } 338 } 339 argv := make([]reflect.Value, len(args)) 340 for i, arg := range args { 341 arg = indirectInterface(arg) 342 // Compute the expected type. Clumsy because of variadics. 343 argType := dddType 344 if !typ.IsVariadic() || i < numIn-1 { 345 argType = typ.In(i) 346 } 347 348 var err error 349 if argv[i], err = prepareArg(arg, argType); err != nil { 350 return reflect.Value{}, fmt.Errorf("arg %d: %w", i, err) 351 } 352 } 353 return safeCall(fn, argv) 354 } 355 356 // safeCall runs fun.Call(args), and returns the resulting value and error, if 357 // any. If the call panics, the panic value is returned as an error. 358 func safeCall(fun reflect.Value, args []reflect.Value) (val reflect.Value, err error) { 359 defer func() { 360 if r := recover(); r != nil { 361 if e, ok := r.(error); ok { 362 err = e 363 } else { 364 err = fmt.Errorf("%v", r) 365 } 366 } 367 }() 368 ret := fun.Call(args) 369 if len(ret) == 2 && !ret[1].IsNil() { 370 return ret[0], ret[1].Interface().(error) 371 } 372 return ret[0], nil 373 } 374 375 // Boolean logic. 376 377 func truth(arg reflect.Value) bool { 378 t, _ := isTrue(indirectInterface(arg)) 379 return t 380 } 381 382 // and computes the Boolean AND of its arguments, returning 383 // the first false argument it encounters, or the last argument. 384 func and(arg0 reflect.Value, args ...reflect.Value) reflect.Value { 385 panic("unreachable") // implemented as a special case in evalCall 386 } 387 388 // or computes the Boolean OR of its arguments, returning 389 // the first true argument it encounters, or the last argument. 390 func or(arg0 reflect.Value, args ...reflect.Value) reflect.Value { 391 panic("unreachable") // implemented as a special case in evalCall 392 } 393 394 // not returns the Boolean negation of its argument. 395 func not(arg reflect.Value) bool { 396 return !truth(arg) 397 } 398 399 // Comparison. 400 401 // TODO: Perhaps allow comparison between signed and unsigned integers. 402 403 var ( 404 errBadComparisonType = errors.New("invalid type for comparison") 405 errBadComparison = errors.New("incompatible types for comparison") 406 errNoComparison = errors.New("missing argument for comparison") 407 ) 408 409 type kind int 410 411 const ( 412 invalidKind kind = iota 413 boolKind 414 complexKind 415 intKind 416 floatKind 417 stringKind 418 uintKind 419 ) 420 421 func basicKind(v reflect.Value) (kind, error) { 422 switch v.Kind() { 423 case reflect.Bool: 424 return boolKind, nil 425 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 426 return intKind, nil 427 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 428 return uintKind, nil 429 case reflect.Float32, reflect.Float64: 430 return floatKind, nil 431 case reflect.Complex64, reflect.Complex128: 432 return complexKind, nil 433 case reflect.String: 434 return stringKind, nil 435 } 436 return invalidKind, errBadComparisonType 437 } 438 439 // eq evaluates the comparison a == b || a == c || ... 440 func eq(arg1 reflect.Value, arg2 ...reflect.Value) (bool, error) { 441 arg1 = indirectInterface(arg1) 442 if arg1 != zero { 443 if t1 := arg1.Type(); !t1.Comparable() { 444 return false, fmt.Errorf("uncomparable type %s: %v", t1, arg1) 445 } 446 } 447 if len(arg2) == 0 { 448 return false, errNoComparison 449 } 450 k1, _ := basicKind(arg1) 451 for _, arg := range arg2 { 452 arg = indirectInterface(arg) 453 k2, _ := basicKind(arg) 454 truth := false 455 if k1 != k2 { 456 // Special case: Can compare integer values regardless of type's sign. 457 switch { 458 case k1 == intKind && k2 == uintKind: 459 truth = arg1.Int() >= 0 && uint64(arg1.Int()) == arg.Uint() 460 case k1 == uintKind && k2 == intKind: 461 truth = arg.Int() >= 0 && arg1.Uint() == uint64(arg.Int()) 462 default: 463 if arg1 != zero && arg != zero { 464 return false, errBadComparison 465 } 466 } 467 } else { 468 switch k1 { 469 case boolKind: 470 truth = arg1.Bool() == arg.Bool() 471 case complexKind: 472 truth = arg1.Complex() == arg.Complex() 473 case floatKind: 474 truth = arg1.Float() == arg.Float() 475 case intKind: 476 truth = arg1.Int() == arg.Int() 477 case stringKind: 478 truth = arg1.String() == arg.String() 479 case uintKind: 480 truth = arg1.Uint() == arg.Uint() 481 default: 482 if arg == zero || arg1 == zero { 483 truth = arg1 == arg 484 } else { 485 if t2 := arg.Type(); !t2.Comparable() { 486 return false, fmt.Errorf("uncomparable type %s: %v", t2, arg) 487 } 488 truth = arg1.Interface() == arg.Interface() 489 } 490 } 491 } 492 if truth { 493 return true, nil 494 } 495 } 496 return false, nil 497 } 498 499 // ne evaluates the comparison a != b. 500 func ne(arg1, arg2 reflect.Value) (bool, error) { 501 // != is the inverse of ==. 502 equal, err := eq(arg1, arg2) 503 return !equal, err 504 } 505 506 // lt evaluates the comparison a < b. 507 func lt(arg1, arg2 reflect.Value) (bool, error) { 508 arg1 = indirectInterface(arg1) 509 k1, err := basicKind(arg1) 510 if err != nil { 511 return false, err 512 } 513 arg2 = indirectInterface(arg2) 514 k2, err := basicKind(arg2) 515 if err != nil { 516 return false, err 517 } 518 truth := false 519 if k1 != k2 { 520 // Special case: Can compare integer values regardless of type's sign. 521 switch { 522 case k1 == intKind && k2 == uintKind: 523 truth = arg1.Int() < 0 || uint64(arg1.Int()) < arg2.Uint() 524 case k1 == uintKind && k2 == intKind: 525 truth = arg2.Int() >= 0 && arg1.Uint() < uint64(arg2.Int()) 526 default: 527 return false, errBadComparison 528 } 529 } else { 530 switch k1 { 531 case boolKind, complexKind: 532 return false, errBadComparisonType 533 case floatKind: 534 truth = arg1.Float() < arg2.Float() 535 case intKind: 536 truth = arg1.Int() < arg2.Int() 537 case stringKind: 538 truth = arg1.String() < arg2.String() 539 case uintKind: 540 truth = arg1.Uint() < arg2.Uint() 541 default: 542 panic("invalid kind") 543 } 544 } 545 return truth, nil 546 } 547 548 // le evaluates the comparison <= b. 549 func le(arg1, arg2 reflect.Value) (bool, error) { 550 // <= is < or ==. 551 lessThan, err := lt(arg1, arg2) 552 if lessThan || err != nil { 553 return lessThan, err 554 } 555 return eq(arg1, arg2) 556 } 557 558 // gt evaluates the comparison a > b. 559 func gt(arg1, arg2 reflect.Value) (bool, error) { 560 // > is the inverse of <=. 561 lessOrEqual, err := le(arg1, arg2) 562 if err != nil { 563 return false, err 564 } 565 return !lessOrEqual, nil 566 } 567 568 // ge evaluates the comparison a >= b. 569 func ge(arg1, arg2 reflect.Value) (bool, error) { 570 // >= is the inverse of <. 571 lessThan, err := lt(arg1, arg2) 572 if err != nil { 573 return false, err 574 } 575 return !lessThan, nil 576 } 577 578 // HTML escaping. 579 580 var ( 581 htmlQuot = []byte(""") // shorter than """ 582 htmlApos = []byte("'") // shorter than "'" and apos was not in HTML until HTML5 583 htmlAmp = []byte("&") 584 htmlLt = []byte("<") 585 htmlGt = []byte(">") 586 htmlNull = []byte("\uFFFD") 587 ) 588 589 // HTMLEscape writes to w the escaped HTML equivalent of the plain text data b. 590 func HTMLEscape(w io.Writer, b []byte) { 591 last := 0 592 for i, c := range b { 593 var html []byte 594 switch c { 595 case '\000': 596 html = htmlNull 597 case '"': 598 html = htmlQuot 599 case '\'': 600 html = htmlApos 601 case '&': 602 html = htmlAmp 603 case '<': 604 html = htmlLt 605 case '>': 606 html = htmlGt 607 default: 608 continue 609 } 610 w.Write(b[last:i]) 611 w.Write(html) 612 last = i + 1 613 } 614 w.Write(b[last:]) 615 } 616 617 // HTMLEscapeString returns the escaped HTML equivalent of the plain text data s. 618 func HTMLEscapeString(s string) string { 619 // Avoid allocation if we can. 620 if !strings.ContainsAny(s, "'\"&<>\000") { 621 return s 622 } 623 var b bytes.Buffer 624 HTMLEscape(&b, []byte(s)) 625 return b.String() 626 } 627 628 // HTMLEscaper returns the escaped HTML equivalent of the textual 629 // representation of its arguments. 630 func HTMLEscaper(args ...any) string { 631 return HTMLEscapeString(evalArgs(args)) 632 } 633 634 // JavaScript escaping. 635 636 var ( 637 jsLowUni = []byte(`\u00`) 638 hex = []byte("0123456789ABCDEF") 639 640 jsBackslash = []byte(`\\`) 641 jsApos = []byte(`\'`) 642 jsQuot = []byte(`\"`) 643 jsLt = []byte(`\u003C`) 644 jsGt = []byte(`\u003E`) 645 jsAmp = []byte(`\u0026`) 646 jsEq = []byte(`\u003D`) 647 ) 648 649 // JSEscape writes to w the escaped JavaScript equivalent of the plain text data b. 650 func JSEscape(w io.Writer, b []byte) { 651 last := 0 652 for i := 0; i < len(b); i++ { 653 c := b[i] 654 655 if !jsIsSpecial(rune(c)) { 656 // fast path: nothing to do 657 continue 658 } 659 w.Write(b[last:i]) 660 661 if c < utf8.RuneSelf { 662 // Quotes, slashes and angle brackets get quoted. 663 // Control characters get written as \u00XX. 664 switch c { 665 case '\\': 666 w.Write(jsBackslash) 667 case '\'': 668 w.Write(jsApos) 669 case '"': 670 w.Write(jsQuot) 671 case '<': 672 w.Write(jsLt) 673 case '>': 674 w.Write(jsGt) 675 case '&': 676 w.Write(jsAmp) 677 case '=': 678 w.Write(jsEq) 679 default: 680 w.Write(jsLowUni) 681 t, b := c>>4, c&0x0f 682 w.Write(hex[t : t+1]) 683 w.Write(hex[b : b+1]) 684 } 685 } else { 686 // Unicode rune. 687 r, size := utf8.DecodeRune(b[i:]) 688 if unicode.IsPrint(r) { 689 w.Write(b[i : i+size]) 690 } else { 691 fmt.Fprintf(w, "\\u%04X", r) 692 } 693 i += size - 1 694 } 695 last = i + 1 696 } 697 w.Write(b[last:]) 698 } 699 700 // JSEscapeString returns the escaped JavaScript equivalent of the plain text data s. 701 func JSEscapeString(s string) string { 702 // Avoid allocation if we can. 703 if strings.IndexFunc(s, jsIsSpecial) < 0 { 704 return s 705 } 706 var b bytes.Buffer 707 JSEscape(&b, []byte(s)) 708 return b.String() 709 } 710 711 func jsIsSpecial(r rune) bool { 712 switch r { 713 case '\\', '\'', '"', '<', '>', '&', '=': 714 return true 715 } 716 return r < ' ' || utf8.RuneSelf <= r 717 } 718 719 // JSEscaper returns the escaped JavaScript equivalent of the textual 720 // representation of its arguments. 721 func JSEscaper(args ...any) string { 722 return JSEscapeString(evalArgs(args)) 723 } 724 725 // URLQueryEscaper returns the escaped value of the textual representation of 726 // its arguments in a form suitable for embedding in a URL query. 727 func URLQueryEscaper(args ...any) string { 728 return url.QueryEscape(evalArgs(args)) 729 } 730 731 // evalArgs formats the list of arguments into a string. It is therefore equivalent to 732 // fmt.Sprint(args...) 733 // except that each argument is indirected (if a pointer), as required, 734 // using the same rules as the default string evaluation during template 735 // execution. 736 func evalArgs(args []any) string { 737 ok := false 738 var s string 739 // Fast path for simple common case. 740 if len(args) == 1 { 741 s, ok = args[0].(string) 742 } 743 if !ok { 744 for i, arg := range args { 745 a, ok := printableValue(reflect.ValueOf(arg)) 746 if ok { 747 args[i] = a 748 } // else let fmt do its thing 749 } 750 s = fmt.Sprint(args...) 751 } 752 return s 753 }